Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 147(6): 3948, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32611185

RESUMO

Understanding the potential effects of pile driving sounds on marine wildlife is essential for regulating offshore wind developments. Here, tracking data from 24 harbour seals were used to quantify effects and investigate sensitivity to the methods used to predict these. The Aquarius pile driving model was used to model source characteristics and acoustic propagation loss (16 Hz-20 kHz). Predicted cumulative sound exposure levels (SELcums) experienced by each seal were compared to different auditory weighting functions and damage thresholds to estimate temporary (TTS) and permanent (PTS) threshold shift occurrence. Each approach produced markedly different results; however, the most recent criteria established by Southall et al. [(2019) Aquat. Mamm. 45, 125-232] suggests that TTS occurrence was low (17% of seals). Predictions of seal density during pile driving made by Russell et al. [(2016) J. Appl. Ecol. 53, 1642-1652] were compared to distance from the wind farm and predicted single-strike sound exposure levels (SELss) by multiple approaches. Predicted seal density significantly decreased within 25 km or above SELss (averaged across depths and pile installations) of 145 dB re 1 µPa2⋅s. However, there was substantial variation in SELss with depth and installation, and thus in the predicted relationship with seal density. These results highlight uncertainty in estimated effects, which should be considered in future assessments.


Assuntos
Fadiga Auditiva , Ruído , Estimulação Acústica , Ruído/efeitos adversos , Som , Espectrografia do Som
2.
Mar Pollut Bull ; 136: 92-106, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30509846

RESUMO

There is global interest in marine renewable energy from underwater tidal turbines. Due to overlap in animal habitat with locations for tidal turbines, the potential for collisions has led to concern around strike risk. Using data from tagged harbor seals collected before construction and after operation of the SeaGen tidal turbine in Northern Ireland, this study quantifies risks of an operational turbine to harbor seals by taking into account turbine characteristics, tidal state, and seal behavior. We found 68% spatial avoidance (95% C.I., 37%, 83%) by harbor seals within 200 m of the turbine. When additionally accounting for variation in seal occupancy over depth and tidal flows, there is an overall reduction in collision risk from 1.29 to 0.125 seals per tidal cycle (90.3% reduction; (95% C.I., 83%, 98%)) compared to risk calculated under assumptions of uniform habitat use. This demonstrates the need to incorporate environmental conditions to properly assess strike risk.


Assuntos
Comportamento Animal/fisiologia , Caniformia/fisiologia , Monitoramento Ambiental/métodos , Energia Renovável , Animais , Caniformia/crescimento & desenvolvimento , Ecossistema , Irlanda do Norte , Oceanos e Mares , Densidade Demográfica , Risco
3.
Sci Rep ; 7(1): 11581, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912473

RESUMO

High-resolution distribution maps can help inform conservation measures for protected species; including where any impacts of proposed commercial developments overlap the range of focal species. Around Orkney, northern Scotland, UK, the harbour seal (Phoca vitulina) population has decreased by 78% over 20 years. Concern for the declining harbour seal population has led to constraints being placed on tidal energy generation developments. For this study area, telemetry data from 54 animals tagged between 2003 and 2015 were used to produce density estimation maps. Predictive habitat models using GAM-GEEs provided robust predictions in areas where telemetry data were absent, and were combined with density estimation maps, and then scaled to population levels using August terrestrial counts between 2008 and 2015, to produce harbour seal usage maps with confidence intervals around Orkney and the North coast of Scotland. The selected habitat model showed that distance from haul out, proportion of sand in seabed sediment, and annual mean power were important predictors of space use. Fine-scale usage maps can be used in consenting and licensing of anthropogenic developments to determine local abundance. When quantifying commercial impacts through changes to species distributions, usage maps can be spatially explicitly linked to individual-based models to inform predicted movement and behaviour.

4.
Adv Exp Med Biol ; 875: 1175-82, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26611084

RESUMO

Monitoring and mitigation reports from 19 UK and 9 other European Union (EU) offshore wind farm (OWF) developments were reviewed, providing a synthesis of the evidence associated with the observed environmental impact on marine mammals. UK licensing conditions were largely concerned with mitigation measures reducing the risk of physical and auditory injury from pile driving. At the other EU sites, impact monitoring was conducted along with mitigation measures. Noise-mitigation measures were developed and tested in UK and German waters in German government-financed projects. We highlight some of the review's findings and lessons learned with regard to noise impact on marine mammals.


Assuntos
Organismos Aquáticos/fisiologia , Fontes Geradoras de Energia , Meio Ambiente , Monitoramento Ambiental , Mamíferos/fisiologia , Ruído/prevenção & controle , Vento , Animais
5.
J Exp Biol ; 210(Pt 18): 3285-94, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17766306

RESUMO

The duration of breath-hold dives and the available time for foraging in submerged prey patches is ultimately constrained by oxygen balance. There is a close relationship between swim speed and oxygen utilisation, so it is likely that breath-holding divers optimise their speeds to and from the feeding patch to maximise time spent feeding at depth. Optimal foraging models suggest that transit swim speed should decrease to minimum cost of transport (MCT) speed in deeper and longer duration dives. Observations also suggest that descent and ascent swimming mode and speed may vary in response to changes in buoyancy. We measured the swimming behaviour during simulated foraging of seven captive female grey seals (two adults and five pups). Seals had to swim horizontally underwater from a breathing box to a submerged automatic feeder. The distance to the feeder and the rate of prey food delivery could be varied to simulate different feeding conditions. Diving durations and distances travelled in dives recorded during these experiments were similar to those recorded in the wild. Mean swim speed decreased significantly with increasing distance to the patch, indicating that seals adjusted their speed in response to travel distance, consistent with optimality model predictions. There was, however, no significant relationship between the transit swim speeds and prey density at the patch. Interestingly, all seals swam 10-20% faster on their way to the prey patch compared to the return to the breathing box, despite the fact that any effect of buoyancy on swimming speed should be the same in both directions. These results suggest that the swimming behaviour exhibited by foraging grey seals might be a combination of having to overcome the forces of buoyancy during vertical swimming and also of behavioural choices made by the seals.


Assuntos
Comportamento Alimentar/fisiologia , Focas Verdadeiras/fisiologia , Natação/fisiologia , Animais , Peso Corporal , Feminino , Modelos Biológicos
6.
Biol Lett ; 3(1): 94-8, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17443975

RESUMO

Seals may delay costly physiological processes (e.g. digestion) that are incompatible with the physiological adjustments to diving until after periods of active foraging. We present unusual profiles of metabolic rate (MR) in grey seals measured during long-term simulation of foraging trips (4-5 days) that provide evidence for this. We measured extremely high MRs (up to almost seven times the baseline levels) and high heart rates during extended surface intervals, where the seals were motionless at the surface. These occurred most often during the night and occurred frequently many hours after the end of feeding bouts. The duration and amount of oxygen consumed above baseline levels during these events was correlated with the amount of food eaten, confirming that these metabolic peaks were related to the processing of food eaten during foraging periods earlier in the day. We suggest that these periods of high MR represent a payback of costs deferred during foraging.


Assuntos
Mergulho/fisiologia , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Frequência Cardíaca/fisiologia , Focas Verdadeiras/fisiologia , Animais , Digestão/fisiologia , Ingestão de Alimentos/fisiologia
7.
J Comp Physiol B ; 176(6): 505-12, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16506041

RESUMO

Many animals rely on stored energy through periods of high energy demand or low energy availability or both. A variety of mechanisms may be employed to attain and conserve energy for such periods. Wild grey seals demonstrate seasonal patterns of energy storage and foraging behaviour that appear to maximize the allocation of energy to reproduction--a period characterized by both high energy demand and low food availability. We examined seasonal patterns in resting rates of oxygen consumption as a proxy for metabolic rate (RMR) and body composition in female grey seals (four adults and six juveniles), testing the hypothesis that adults would show seasonal changes in RMR related to the reproductive cycle but that juveniles would not. There was significant seasonal variation in rates of resting oxygen consumption of adult females, with rates being highest in the spring and declining through the summer months into autumn. This variation was not related to changes in water temperature. Adults increased in total body mass and in fat content during the same spring to autumn period that RMR declined. RMR of juveniles showed no clear seasonal patterns, but did increase with increasing mass. These data support the hypothesis that seasonal variation in RMR in female grey seals is related to the high costs of breeding.


Assuntos
Metabolismo Basal , Composição Corporal , Cruzamento/economia , Estações do Ano , Tecido Adiposo , Animais , Peso Corporal , Feminino , Consumo de Oxigênio , Reprodução , Focas Verdadeiras
8.
J Exp Biol ; 207(Pt 10): 1615-24, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15073194

RESUMO

The energetic cost of diving in marine mammals is a difficult value to derive given the problems of assessing metabolic rate for an animal at sea. Nevertheless, it is fundamental to our understanding of the foraging strategies of air-breathers exploiting underwater food sources. We measured the metabolic rates of eight captive grey seals, voluntarily diving in a quasi-natural setting. Oxygen consumption during post-dive surface periods was measured using open-flow respirometry, and dive behaviour of the seals was recorded using time depth recorders (TDRs). Mean diving metabolic rate (DMR) for both adults and juveniles was 1.7 times the predicted standard metabolic rate of terrestrial animals of equal size. For all animals, DMR was lower than the rate of metabolism measured whilst they were resting at the water's surface. On a dive-by-dive basis, DMR decreased with dive duration but increased with mean swim speed. Regressing the maximum 5% of DMRs against dive duration resulted in a significant negative relationship that was not significantly different from the relationship between the calculated maximum rate of aerobic metabolism and dive duration, suggesting that these seals were diving within, and up to, their aerobic limits. We developed a model that allows the prediction of DMR from information on dive behaviour of the type routinely collected in telemetry studies of wild seals. The model accurately predicts DMR using behavioural data from periods of diving with known metabolism data. This model can be used to predict the at-sea metabolic rate of wild grey seals, an important input into ecosystem models.


Assuntos
Mergulho/fisiologia , Metabolismo Energético/fisiologia , Modelos Biológicos , Focas Verdadeiras/fisiologia , Animais , Consumo de Oxigênio/fisiologia , Análise de Regressão , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...